解除固定固定关闭

中国区总部
Beckhoff Automation (Shanghai) Co., Ltd.

市北智汇园4号楼
静安区汶水路 299 弄 9-10 号
上海, 200072, 中国

+86 21 6631 2666
info@beckhoff.com.cn
www.beckhoff.com.cn/zh-cn/

XFC | 极速控制技术

XFC 极速控制技术基于高效的控制和通信架构:XFC 技术可以实现 I/O 响应时间 < 100 μs。

XFC 技术信息

控制性能跃上新台阶

倍福的 XFC 极速控制技术是一重全新理念的超高速控制解决方案:XFC 基于高效的控制和通信架构,包括高性能工业 PC、带有实时特性的超高速 I/O 端子模块、EtherCAT 高速工业以太网和 TwinCAT 自动化软件。采用 XFC 技术后,可以实现 I/O 响应时间 ≤ 100 μs

XFC 代表着一种速度非常快且时间确定性非常高的控制技术,它包括控制领域所涉及到的所有硬件和软件组件:它包含了控制领域所涉及到的所有硬件和软件组件:优化的输入和输出组件,可以非常精确地检测信号或初始化任务;用作为超高速通信网络的 EtherCAT;高性能工业 PC;连接所有系统组件的 TwinCAT 自动化软件。

过去,控制周期时间一般都在 10-20 ms 左右,通信接口处于自由运行状态,导致准确性的精度不够,并影响过程信号。随着高性能工业 PC 控制器的实用性技术迅猛发展,周期时间可降至 1-2 ms,几乎缩减了 10 倍。因此,许多特殊控制回路可被移到中央控制器中,大大节省了成本,提高了智能化算法应用方面的灵活性。

XFC 则可以使响应时间再缩短 10 倍,即周期时间低至 100 μs,而不会对中央智能控制系统和相关的高性能算法产生任何影响。此外,XFC 技术不仅可以缩短周期时间,而且还可以提高时间精度和分辨率。

用户完全可以从提高设备品质及缩短响应时间的全新选择中获益。例如,预防性维护测试任务、空闲时间监视或部件质量文件归档等功能都可被轻松地集成到设备控制中,而无需额外使用昂贵的专用设备。

在实际的自动化解决方案中,并不是所有的任务都必须达到超高速或者高精度 — 很多任务仍然可以采用“普通的”解决方案进行处理。因此,XFC 技术不仅完全兼容已有的解决方案,而且还可以在相同的硬件和软件均中与已有的解决方案同时使用。

XFC 技术

在一个普通的离散式控制环路中,输入组件在某个特定时间获取实际数据,并通过通信组件将结果传输到控制系统。控制组件计算响应,输出组件将结果发送给设置值输出模块(输出组件),并发布给被控制系统处理。

控制过程的关键要素是:响应时间最小,实际值获取时间的确定(即,必须尽可能地精确计算时间),以及相应时间确定的设定值输出。从时域上看,通信和计算同时发生,却又互不相关。只要结果在输出单元中有效,并可持续到下一次输出,即要求 I/O 组件具备时间精度,而不是要求通信或者运算单元具备时间精度。

因此,EtherCAT 分布时钟代表基本的 XFC 技术,同时也是 EtherCAT 通信的一个通用组件。所有 EtherCAT 设备自身都配备了本地时钟,并通过 EtherCAT 通信自动连续地与其它所有时钟保持同步。通信运行时间偏差可以得到补偿,因此,通常情况下,所有时钟之间的最大偏差小于 100 ns。而且,分布式时钟的当前时间也被称作为系统时间,因为它可以始终在整个系统中有效。

通常,过程数据以其各自的数据格式传输(例如,一个数字量值用一个位来表示,一个模拟量值用一个字来表示)。因此,当传输记录时,过程记录的时间相关性在通信周期中是固定的。它表明时间分辨率和精度也会受到通信周期的限制。

除用户数据之外,时间戳数据类型还包含一个时间戳。该时间戳 — 一般采用普遍存在的系统时间表示 — 能够为过程记录提供高精度的时间信息。时间戳可以用于输入(例如,识别一个已发生事件的时间)和输出(例如,计时一个响应)。这样,例如,可以在切换输出时及时确定精确的点位置。该切换任务在执行时与总线周期无关。

时间戳端子模块每个总线周期可以执行一个切换任务或切换事件,而多时间戳端子模块每个周期最多可以执行 32 个切换任务或切换事件。

通常,过程数据在每一个通信周期中被准确地传输一次。与此相反,一个过程记录的时间分辨率直接取决于通信周期时间。只有缩短周期时间,才有可能获得更高的时间分辨率,但周期时间又往往受到相关的实际条件限制。

超采样数据类型能够实现在一个通信周期内对一个过程记录以及对包含在一个数组中随后产生的(输入)或之前已产生的(输出)所传输的所有数据进行多次采样。超采样系数描述了在一个通信周期中采样的次数,因此是 1 的倍数。即使是在一般的通信周期时间条件下,也可以轻松达到 200 kHz 的采样率。

I/O 组件中的采样触发受本地时钟控制(或全局系统时钟),因此,它可以使整个网络范围内的分布式信号之间的时间关系得以关联。

快速的物理响应要求相关联的控制系统具备相应的较短控制周期。只有当控制系统已经检测并处理一个事件时,才会产生一个响应。

传统的方法要达到 100 μs 的周期时间,需要依赖专用的、独立的控制器,这些控制器必须拥有直接控制的 I/O。这种方法有明显的缺陷,因为这些独立的控制器对系统总体而言只包含了极其有限的信息,而且也不能制定更高层次的决策。此外,参数重整定(例如加工新工件)也受到限制。另一个明显的缺陷是固定的 I/O 配置,一般情况下,不能对其进行扩展。

XFC 性能数据

  • 100 μs(最快 50 μs)
  • 全方位提升 PLC 应用的性能等级:100 μs 级的控制环

  • 最快 85 μs
  • 时间确定的同步输入和输出信号转换,仅有细小的处理时间抖动
  • 处理时间抖动独立于通信和 CPU 抖动

  • 单控制周期实现多次信号转换
  • 通过分布时钟实现硬实时同步
  • 适用于数字量输入/输出信号
  • 适用于模拟量输入/输出信号
  • 支持模拟量 EtherCAT I/O 端子模块
    • 信号转换频率最高可达 100 kHz
    • 最高分辨率可达 10 μs
  • 支持数字量 EtherCAT I/O 端子模块
    • 最高 1 MHz
    • 时间分辨率最高可达 1 μs
  • 应用
    • 快速信号监视
    • 快速函数发生器输出
    • 信号采样与周期无关
    • 快速回路控制

  • 数字量信号单次事件触发的时间测量非常精确:分辨率为 1 ns,内部采样 10 ns,分布式时钟的精度 << 1 μs(+ 输入延迟)
  • 分布式数字输入信号上升沿或下降沿的高精度时间测量
  • 分布式输出信号的高精度计时,与控制周期无关
  • 分布式时钟绝对时间的分辨率为 64 位,可以实现轻松的时间处理 > 580 年

  • 每个周期可以实现 32 个事件的精确时间测量:分辨率为 1 ns,视配置而定,内部采样 10…40 μs
  • 分布式数字输入信号上升沿或下降沿的高精度时间测量
  • 分布式输出信号的高精度计时,与控制周期无关
  • 时间分辨率为 32 位的分布式时钟,足够用于完成 ±4 秒时帧内的动作

  • CPU、I/O 和驱动设备的分布式绝对系统时间同步
  • 内部采样:10 ns
  • 分布式时钟精度:<< 1 µs

XFC 组件

为了实现上文阐述的 XFC 技术,必须要求相关的控制系统全面支持所有的硬件和软件组件,包括高速、时间确定的通信和 I/O,以及控制硬件。XFC 的一个重要组成部分是软件组件,它负责控制算法的快速处理和整个系统的优化配置。

倍福提供的专用 XFC 产品系列主要包括 5 个类别:EtherCAT 现场总线、由 EtherCAT 端子模块组成的 I/O 系统、工业 PC 硬件平台、伺服驱动器运动控制组件和 TwinCAT 控制软件。所有的组件都基于开放的标准,它表明任何一位工程师或程序员都可以开发基于标准组件的、高性能的高速控制解决方案(即,无需特殊硬件支持)。


EtherCAT I/O 系统提供了 200 多种不同的信号端子模块。标准的 EtherCAT 端子模块全方位地支持 XFC 技术。所有的端子模块都支持 I/O 转换同步通信,以及已成为 EtherCAT 技术标准的、精度更高的分布时钟功能。最新开发的 XFC 端子模块还提供了额外的特殊功能,尤其适合高速或高精度的应用场合:

  • 数字量 EtherCAT 端子模块具有极短的开通/关断时间特性,或模拟量端子模块具有非常短的转换时间
  • 带有时间戳功能的 EtherCAT 端子模块可以精确锁定某个数字量或者模拟量事件发生时的系统时间。数字量或者模拟量的值也可以在预定的时间里精确输出
  • 带有超采样功能的端子模块可以使实际值获取或设定值输出的分辨率大大高于通信周期时间

超采样

  • 通过跨越系统的分布式时钟同步时间
  • 抖动 < 1 μs

   
EL1262
type 3, oversampling type 3,超采样
2 通道数字量输入端子模块,24 V DC
EL2262
oversampling 超采样
2 通道数字量输出端子模块,24 V DC
EL3742
differential input, 16 bit, oversampling 差分输入,16 位,超采样
2 通道模拟量输入端子模块,0…20 mA
EL3702
differential input, 16 bit, oversampling 差分输入,16 位,超采样
2 通道模拟量输入端子模块,-10 V…+10 V
EL4732
16 bit, oversampling 16 位,超采样
2 通道模拟量输出端子模块,-10 V…+10 V
EL4712
16 bit, oversampling 16 位,超采样
2 通道模拟量输出端子模块,0…20 mA

时间戳

  • 系统精度 < 1 μs

同步响应通过时间戳输入端子模块和时间戳输出端子模块实现;而在过去,总线系统很难实现小于 1 µs 的同步精度。全新的 XFC 技术取代了传统的硬件连线方式。

   
EL1252
type 3, timestamp type 3,时间戳
2 通道数字量输入端子模块,24 V DC
EL2252
timestamp 时间戳
2 通道数字量输出端子模块,24 V DC
EP1258-0001
8 x M8, 2-channel timestamp8 x M8,2 通道时间戳
8 通道数字量输入端子模块,24 V DC,带 2 通道时间戳
EP1258-0002
4 x M12, 2-channel timestamp 4 x M12,2 通道时间戳
8 通道数字量输入端子模块,24 V DC,带 2 通道时间戳

高速 I/O

  • 接通/关断输入延迟 1 μs
采用 EL1202 和 EL2202 XFC 端子模块,端子模块的硬件延迟缩减至 < 1 µs,因此可以忽略不计。输入/输出数据以最大速度向前传输。

   
EL1202
type 3 type 1/3
2 通道数字量输入端子模块,24 V DC
EL2252
timestamp 时间戳
2 通道数字量输出端子模块,24 V DC

由于其拥有高速通信和高数据利用率,EtherCAT 为实现 XFC 提供了基本的前提条件。然而,网络通信速度并不能代表一切。作为一种选择,可以使用总线方式交换几个独立排列的过程映像,并结合控制应用类型的特点,同时应用 XFC 技术和标准的控制技术。中央控制系统可以从复制和映射等耗时的任务中解脱出来,从而将一切可以利用的计算能力用于控制算法。

EtherCAT 分布式时钟构成了 XFC 技术的高速时间链路,并已集成到所有的通信设备中。

XFC 技术至关重要的特点是可以选择将所有 I/O 组件都直接集成到 EtherCAT 通信中,因此,无需子通信系统(子总线)。在很多 XFC 端子模块内部,数/模、模/数转换器都是直接与 EtherCAT 芯片相连接,从而避免了信号延迟。

如果要求运行速度更快、控制算法更强,则中央控制技术相对多个分布式的小型控制器而言则具有明显优势。现代工业 PC 所提供的计算和存储能力远远高于多个小型控制器之和,而前者的价格却要便宜得多。

最新一代 PC 技术的创新也非常适合用于控制领域。高速多核处理器十分适合同时用于控制任务和设备的人机操作。而新一代 CPU 所具备的超大容量高速缓存对于 XFC 技术而言也是非常有利的,因为高速算法正是在此缓存中运行,从而使得处理速度更加快捷。

XFC 具有更短周期时间的一个重要因素是:CPU 不再需要承担传统现场总线采用的基于 DPRAM 机制的中央控制板的复杂过程数据的复制任务。EtherCAT 过程数据通信完全由集成的以太网控制器(带有 DMA 总线主站的网络接口卡)处理。

AX8000 多轴伺服系统的轴模块也支持 XFC 技术。 EtherCAT 周期时间为 62.5 µs,电流控制器周期时间为 31.25 µs,奠定了高速采集和传输测量数据的基础。 位置锁存可以通过带时间戳的高速数字量输入实现。通过超采样技术可以使用比 EtherCAT 周期时间更高的分辨率将位置或速度等测量值提供用于软件示波器记录。更重要的是,多根驱动轴可以通过分布式时钟进行同步 — 例如,在机床中。

TwinCAT 是一款高性能的自动化控制软件,它在全面支持 XFC 技术的同时,还保留了所有常用的功能。TwinCAT 实时核支持具有不同周期时间的不同任务。现代工业 PC 可以轻而易举地实现 100 μs 的周期时间,甚至更低。多个(不同的)现场总线可以被集成在一个主干网络里混合使用,相关的配置和通信周期也可以根据现场总线的性能得到优化。

在 TwinCAT 软件环境中,EtherCAT 可以充分利用通信系统,并可以使用多个独立的时间等级,即分布式时钟。不同的时间等级可以使 XFC 和普通的控制任务共存于同一个系统之中,决不会因满足 XFC 的需求而出现“瓶颈效应”。

TwinCAT 专为 XFC 技术提供了一个新选项,即在独立的通信调用期间读取输入,并且在计算后直接输出。由于 EtherCAT 的通信速度极快,输入可以“正好”在控制任务开始之前进行读取和处理,并紧随其后立刻分发输出。某些情况下,其最终响应时间比现场总线的周期时间还要快。

TwinCAT 所具备的特殊扩展功能使得 XFC 数据类型(时间戳和超采样)的处理更加简单。PLC 功能块可以对时间戳进行简单的分析和计算。TwinCAT 示波器软件可以按照分配的超采样率显示通过超采样方式捕获的数据,并可以进行更加精确的数据分析。

产品

EL1202 | EtherCAT Terminal, 2-channel digital input, 24 V DC, 1 µs

EL1202

The EL1202 digital input terminal acquires the binary 24 V control signals from the process level and transmits them, in an electrically isolated form, to the higher-level automation unit. The EtherCAT Terminal contains two channels whose signal state is indicated by LEDs.

EL1252 | EtherCAT Terminal, 2-channel digital input, 24 V DC, 1 µs, timestamp

EL1252

The EL1252 digital input terminal acquires the fast binary 24 V control signals from the process level and transmits them, in an electrically isolated form, to the controller. The EtherCAT Terminal contains two channels whose signal state is indicated by LEDs. The signals are furnished with a time stamp that identifies the time of the last edge change with a resolution of 1 ns. With this XFC technology, signal characteristics can be traced exactly in time and correlated with the distributed clocks system-wide. With this technology, machine-wide parallel hardware wiring of digital inputs or encoder signals for synchronization purposes is often no longer required. In conjunction with the EL2252 EtherCAT Terminal (digital output terminal with time stamp), the EL1252 enables responses with equidistant time intervals, largely independent of the bus cycle time.

EL1262 | EtherCAT Terminal, 2-channel digital input, 24 V DC, 1 µs, oversampling

EL1262

The EL1262 digital input terminal acquires the fast binary 24 V control signals from the process level and transmits them, in an electrically isolated form, to the controller. The EtherCAT Terminal has two channels that indicate their signal state via light emitting diodes. The signals are sampled with a configurable, integer multiple (oversampling factor: n) of the bus cycle frequency (n microcycles per bus cycle). For each bus cycle, the EtherCAT Terminal generates a process data block that is transferred collectively during the next bus cycle. The timebase of the terminal can be synchronized precisely with other EtherCAT devices via distributed clocks. This XFC procedure enables the temporal resolution of the digital input signals to be increased to n times the bus cycle time.

M8

EP1258-0001

The EP1258-0001 EtherCAT Box with digital inputs acquires the fast binary control signals from the process level and transmits them, in an electrically isolated form, to the controller. The signals are furnished with a timestamp that identifies the time of the last edge change with a resolution of 1 ns. This technology enables signals to be traced exactly over time and synchronized with the distributed clocks across the system. With this technology, machine-wide parallel hardware wiring of digital inputs or encoder signals for synchronization purposes is often no longer required. In this way, the EP1258 enables responses with equidistant time intervals, largely independent of the bus cycle time.

M12

EP1258-0002

The EP1258-0002 EtherCAT Box with digital inputs acquires the fast binary control signals from the process level and transmits them, in an electrically isolated form, to the controller. The signals are furnished with a timestamp that identifies the time of the last edge change with a resolution of 1 ns. This technology enables signals to be traced exactly over time and synchronized with the distributed clocks across the system. With this technology, machine-wide parallel hardware wiring of digital inputs or encoder signals for synchronization purposes is often no longer required. In this way, the EP1258 enables responses with equidistant time intervals, largely independent of the bus cycle time.

EL2202 | EtherCAT Terminal, 2-channel digital output, 24 V DC, 0.5 A, push-pull, tristate

EL2202

The EL2202/EL2202-0100 digital output terminal connects the binary control signals from the automation device on to the actuators at the process level with electrical isolation. This terminal benefits from very small output delay and is therefore suitable for signals requiring particularly fast output. The EtherCAT Terminal has a push-pull output that can be actively switched to 24 V, 0 V or high-impedance. The EL2202-0100 contains two channels. LEDs indicate the signal state of each channel.

EL2252 | EtherCAT Terminal, 2-channel digital output, 24 V DC, 0.5 A, timestamp

EL2252

The EL2252 digital output terminal connects the binary control output signals at the process level with electrical isolation. The outputs of the EtherCAT Terminal are switched with high precision to match the transferred timestamp, which has a resolution of 10 ns. This technology enables output switching times to be specified precisely across the system. The distributed clocks are used for reference. In conjunction with the EL1252 (digital input terminal with time stamp), the EL2252 enables responses with equidistant time intervals, largely independent of the bus cycle time. Each output can be switched to high resistance individually.

EL2262 | EtherCAT Terminal, 2-channel digital output, 24 V DC, 0.5 A, oversampling

EL2262

The EL2262 digital output terminal connects the binary control output signals at the process level with electrical isolation. The outputs are controlled with an adjustable integral multiple (oversampling factor: n) of the bus cycle frequency (n microcycles per bus cycle). For each bus cycle, the EtherCAT Terminal receives a process data block that is output consecutively. The timebase of the terminal can be synchronized precisely with other EtherCAT devices via distributed clocks. An output pattern with a significantly higher pulse sequence than the bus cycle time is thus output precisely with the system-wide timebase. This procedure enables the temporal resolution of the digital output signals to be increased to n times the bus cycle time. The maximum output rate is 1 Msamples/s.

EL3742 | EtherCAT Terminal, 2-channel analog input, current, 0…20 mA, 16 bit, oversampling

EL3742

The EL3742 analog input terminal handles signals in the range between 0 and 20 mA. The voltage is digitized to a resolution of 16 bits, and is transmitted, electrically isolated, to the controller. The input channels of the EtherCAT Terminal have differential inputs and possess a common, internal ground potential. The signals are oversampled with an adjustable, integer multiple (oversampling factor: n) of the bus cycle frequency (n microcycles per bus cycle). For each bus cycle, the EtherCAT Terminal generates a process data block that is collected and transferred during the next bus cycle. The time base of the terminal can be synchronized precisely with other EtherCAT devices via distributed clocks. This procedure enables the temporal resolution of the analog input signals to be increased to n times the bus cycle time. In conjunction with the EL47xx (analog output terminal with oversampling), responses with equidistant time intervals, e.g. in the event of a threshold value being exceeded, become possible. The distributed clocks function enables several EL3742 devices to be synchronized in almost any configuration. The maximum sampling rate per channel is 100 ksamples/s (100,000 samples/s).

EL3702 | EtherCAT Terminal, 2-channel analog input, voltage, ±10 V, 16 bit, oversampling

EL3702

The EL3702 analog input terminal handles signals in the range between -10 and +10 V. The voltage is digitized to a resolution of 16 bits, and is transmitted, electrically isolated, to the controller. The signals are oversampled with an adjustable, integer multiple (oversampling factor: n) of the bus cycle frequency (n microcycles per bus cycle). For each bus cycle, the EtherCAT Terminal generates a process data block that is transferred collectively during the next bus cycle. The time base of the terminal can be synchronized precisely with other EtherCAT devices via distributed clocks. This procedure enables the temporal resolution of the analog input signals to be increased to n times the bus cycle time. In conjunction with the EL47xx (analog output terminal with oversampling), responses with equidistant time intervals, e.g. in the event of a threshold value being exceeded, become possible.

EL4732 | EtherCAT Terminal, 2-channel analog output, voltage, ±10 V, 16 bit, oversampling

EL4732

The EL4732 analog output terminal generates signals in the range between -10 V and +10 V. The voltage is supplied to the process level with a resolution of 16 bits and is electrically isolated. The output channels have a common ground potential. The outputs are oversampled with an adjustable, integer multiple (oversampling factor: n) of the bus cycle frequency (n microcycles per bus cycle). For each bus cycle, the EtherCAT Terminal receives a process data block that is output consecutively. The time base of the terminal can be synchronized precisely with other EtherCAT devices via distributed clocks. This procedure enables the temporal resolution of the analog output signals to be increased to n times the bus cycle time. In conjunction with the EL37xx (analog input terminal with oversampling), responses with equidistant time intervals, e.g. in the event of a threshold value being exceeded, become possible. The EL4732 device can output a maximum of 100,000 values (100 ksamples/s) per channel and second.

EL4712 | EtherCAT Terminal, 2-channel analog output, current, 0…20 mA, 16 bit, oversampling

EL4712

The EL4712 analog output terminal generates output signals in the range between 0 and 20 mA. The voltage is supplied to the process level with a resolution of 16 bits and is electrically isolated. The output channels have a common ground potential. The outputs are sampled with an adjustable, integer multiple (oversampling factor: n) of the bus cycle frequency (n microcycles per bus cycle). For each bus cycle, the EtherCAT Terminal receives a process data block that is output consecutively. The time base of the terminal can be synchronized precisely with other EtherCAT devices via distributed clocks. This procedure enables the temporal resolution of the analog output signals to be increased to n times the bus cycle time. In conjunction with the EL37xx (analog input terminal with oversampling), responses with equidistant time intervals, e.g. in the event of a threshold value being exceeded, become possible. The EL4712 device can output a maximum of 100,000 values (100 ksamples/s) per channel and second.

AX8525 | Combined power supply and axis module

AX8525

The AX8525 and AX8540 combined power supply and axis modules unite the function of an AX86xx power supply module with an AX81xx axis module in a single device. As a result, the AX-Bridge is not loaded by the axis current of the first axis and up to 50 A DC are available for additional axis modules. The power supply provides 80 A DC to the DC-Link and contains an internal brake resistor as well as a chopper for the connection of an external brake resistor. The integrated axis module with TwinSAFE safety functions is available with a rated current of 25 A or 40 A and can optionally be ordered with multi-feedback interface.

AX8540 | Combined power supply and axis module

AX8540

The AX8525 and AX8540 combined power supply and axis modules unite the function of an AX86xx power supply module with an AX81xx axis module in a single device. As a result, the AX-Bridge is not loaded by the axis current of the first axis and up to 50 A DC are available for additional axis modules. The power supply provides 80 A DC to the DC-Link and contains an internal brake resistor as well as a chopper for the connection of an external brake resistor. The integrated axis module with TwinSAFE safety functions is available with a rated current of 25 A or 40 A and can optionally be ordered with multi-feedback interface.

AX8108 | Single-axis module

AX8108

An axis module contains the DC-Link and the inverter for supplying the motor. Depending on the required number of axes, the axis modules are attached to the power supply module to form the multi-axis servo system. Axis modules with different ratings can be combined in order to enable an optimized design of the individual axes.

AX8118 | Single-axis module

AX8118

An axis module contains the DC-Link and the inverter for supplying the motor. Depending on the required number of axes, the axis modules are attached to the power supply module to form the multi-axis servo system. Axis modules with different ratings can be combined in order to enable an optimized design of the individual axes.

AX8206 | Dual-axis module

AX8206

An axis module contains the DC-Link and the inverter for supplying the motor. Depending on the required number of axes, the axis modules are attached to the power supply module to form the multi-axis servo system. Axis modules with different ratings can be combined in order to enable an optimized design of the individual axes.